Real algebraic geometry /

Saved in:
Bibliographic Details
Author / Creator:Arnolʹd, V. I. (Vladimir Igorevich), 1937-2010.
Uniform title:Veshchestvennaya algebraicheskaya geometriya. English
Imprint:Berlin ; New York : Springer, c2013.
Description:1 online resource.
Language:English
Series:UNITEXT, 2038-5714 ; v.66
Unitext ; v.66.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/9850722
Hidden Bibliographic Details
ISBN:9783642362439 (electronic bk.)
3642362435 (electronic bk.)
9783642362422
Summary:This book is concerned with one of the most fundamental questions of mathematics: the relationship between algebraic formulas and geometric images. At one of the first international mathematical congresses (in Paris in 1900), Hilbert stated a special case of this question in the form of his 16th problem (from his list of 23 problems left over from the nineteenth century as a legacy for the twentieth century). In spite of the simplicity and importance of this problem (including its numerous applications), it remains unsolved to this day (although, as you will now see, many remarkable results have been discovered).

MARC

LEADER 00000cam a2200000Ka 4500
001 9850722
003 ICU
005 20140128113500.0
006 m o d
007 cr cnu---unuuu
008 130430s2013 gw o 000 0 eng d
020 |a 9783642362439 (electronic bk.) 
020 |a 3642362435 (electronic bk.) 
020 |z 9783642362422 
035 |a (OCoLC)841223199 
040 |a GW5XE  |c GW5XE  |d YDXCP  |d COO  |d ZMC  |d NUI  |d HEBIS 
041 1 |a eng  |h rus 
049 |a CGUA 
082 0 4 |a 516.3/5  |2 23 
090 |a QA564  |b .A76 2013 
100 1 |a Arnolʹd, V. I.  |q (Vladimir Igorevich),  |d 1937-2010.  |0 http://id.loc.gov/authorities/names/n81037438  |1 http://viaf.org/viaf/49221000 
240 1 0 |a Veshchestvennaya algebraicheskaya geometriya.  |l English 
245 1 0 |a Real algebraic geometry /  |c Vladimir I. Arnold ; translated by Gerald G. Gould and David Kramer. 
260 |a Berlin ;  |a New York :  |b Springer,  |c c2013. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a UNITEXT,  |x 2038-5714 ;  |v v.66 
505 0 0 |t Introduction --  |t Geometry of Conic Sections --  |t The Physics of Conic Sections and Ellipsoids --  |t Projective Geometry --  |t Complex Algebraic Curves --  |t A Problem for School Pupils. 
520 |a This book is concerned with one of the most fundamental questions of mathematics: the relationship between algebraic formulas and geometric images. At one of the first international mathematical congresses (in Paris in 1900), Hilbert stated a special case of this question in the form of his 16th problem (from his list of 23 problems left over from the nineteenth century as a legacy for the twentieth century). In spite of the simplicity and importance of this problem (including its numerous applications), it remains unsolved to this day (although, as you will now see, many remarkable results have been discovered). 
650 0 |a Geometry, Algebraic.  |0 http://id.loc.gov/authorities/subjects/sh85054140 
653 4 |a Mathematics. 
653 4 |a Geometry. 
653 4 |a Mathematical physics. 
653 4 |a Algebraic Geometry. 
653 4 |a Mathematical Applications in the Physical Sciences. 
655 4 |a Electronic books. 
650 7 |a Geometry, Algebraic.  |2 fast  |0 http://id.worldcat.org/fast/fst00940902 
830 0 |a Unitext ;  |v v.66. 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-36243-9  |y SpringerLink 
903 |a HeVa 
035 |a (ICU)9850722 
929 |a eresource 
999 f f |i f8402553-4b05-5f7b-bb6c-b4233892d036  |s d631cde5-ace7-5f71-94bf-4d8d131b2166 
928 |t Library of Congress classification  |a QA564 .A76 2013  |l Online  |c UC-FullText  |u http://dx.doi.org/10.1007/978-3-642-36243-9  |z SpringerLink  |g ebooks  |i 11491912