Limit theorems in probability, statistics and number theory : in honor of Friedrich Götze /

Saved in:
Bibliographic Details
Imprint:Berlin ; New York : Springer, c2013.
Description:1 online resource.
Language:English
Series:Springer proceedings in mathematics & statistics, 2194-1009 ; v.42
Springer proceedings in mathematics & statistics ; v.42.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/9850839
Hidden Bibliographic Details
Other authors / contributors:Eichelsbacher, Peter.
ISBN:9783642360688 (electronic bk.)
3642360688 (electronic bk.)
9783642360671
Summary:Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising conn

MARC

LEADER 00000cam a2200000Ka 4500
001 9850839
003 ICU
005 20140128113900.0
006 m o d
007 cr cnu---unuuu
008 130507s2013 gw o 010 0 eng d
020 |a 9783642360688 (electronic bk.) 
020 |a 3642360688 (electronic bk.) 
020 |z 9783642360671 
035 |a (OCoLC)841924276 
040 |a GW5XE  |c GW5XE  |d YDXCP  |d COO  |d N$T  |d ZMC  |d MHW  |d DEBSZ 
049 |a CGUA 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
090 |a QA273.67  |b .L56 2013 
245 0 0 |a Limit theorems in probability, statistics and number theory :  |b in honor of Friedrich Götze /  |c Peter Eichelsbacher...[et al.], editors. 
260 |a Berlin ;  |a New York :  |b Springer,  |c c2013. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Springer proceedings in mathematics & statistics,  |x 2194-1009 ;  |v v.42 
505 0 0 |t Number Theory.  |t Distribution of Algebraic Numbers and Metric Theory of Diophantine Approximation /  |r V. Bernik, V. Beresnevich, F. Götze, O. Kukso --  |t Fine-Scale Statistics for the Multidimensional Farey Sequence /  |r Jens Marklof --  |t Probability Theory.  |t On the Problem of Reversibility of the Entropy Power Inequality /  |r Sergey G. Bobkov, Mokshay M. Madiman --  |t On Probability Measures with Unbounded Angular Ratio /  |r G. P. Chistyakov --  |t CLT for Stationary Normal Markov Chains via Generalized Coboundaries /  |r Mikhail Gordin --  |t Operator-Valued and Multivariate Free Berry-Esseen Theorems /  |r Tobias Mai, Roland Speicher --  |t A Characterization of Small and Large Time Limit Laws for Self-normalized Lévy Processes /  |r Ross Maller, David M. Mason --  |t Statistics and Combinatorics.  |t A Nonparametric Theory of Statistics on Manifolds /  |r Rabi Bhattacharya --  |t Proportion of Gaps and Fluctuations of the Optimal Score in Random Sequence Comparison /  |r Jüri Lember, Heinrich Matzinger, Felipe Torres --  |t Some Approximation Problems in Statistics and Probability /  |r Yuri V. Prokhorov, Vladimir V. Ulyanov --  |t Random Matrices.  |t Moderate Deviations for the Determinant of Wigner Matrices /  |r Hanna Döring, Peter Eichelsbacher --  |t The Semicircle Law for Matrices with Dependent Entries /  |r Olga Friesen, Matthias Löwe --  |t Limit Theorems for Random Matrices /  |r Alexander Tikhomirov. 
520 |a Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising conn 
650 0 |a Limit theorems (Probability theory)  |0 http://id.loc.gov/authorities/subjects/sh85077023 
653 4 |a Mathematics. 
653 4 |a Functional analysis. 
653 4 |a Number theory. 
653 4 |a Distribution (Probability theory). 
653 4 |a Probability Theory and Stochastic Processes. 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
650 7 |a Limit theorems (Probability theory)  |2 fast  |0 http://id.worldcat.org/fast/fst00998881 
700 1 |a Eichelsbacher, Peter. 
830 0 |a Springer proceedings in mathematics & statistics ;  |v v.42. 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-36068-8  |y SpringerLink 
903 |a HeVa 
035 |a (ICU)9850839 
929 |a eresource 
999 f f |i 77ed0bd1-9138-58a4-ba1e-a7af985eae83  |s db1cea4d-b70f-53cf-95cd-23d8ba1423d6 
928 |t Library of Congress classification  |a QA273.67 .L56 2013  |l Online  |c UC-FullText  |u http://dx.doi.org/10.1007/978-3-642-36068-8  |z SpringerLink  |g ebooks  |i 11492392