Hypoelliptic Laplacian and Bott-Chern cohomology : a theorem of Riemann-Roch-Grothendieck in complex geometry /
Saved in:
Author / Creator: | Bismut, Jean-Michel. |
---|---|
Imprint: | Cham ; New York : Birkhäuser, c2013. |
Description: | 1 online resource. |
Language: | English |
Series: | Progress in mathematics ; v.305 Progress in mathematics (Boston, Mass.) ; v.305. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/9851236 |
MARC
LEADER | 00000cam a2200000Ka 4500 | ||
---|---|---|---|
001 | 9851236 | ||
003 | ICU | ||
005 | 20140128115400.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130605s2013 sz ob 001 0 eng d | ||
020 | |a 9783319001289 (electronic bk.) | ||
020 | |a 3319001280 (electronic bk.) | ||
020 | |z 9783319001272 | ||
035 | |a (OCoLC)846845296 | ||
040 | |a GW5XE |c GW5XE |d YDXCP |d N$T |d COO |d ZMC | ||
049 | |a CGUA | ||
072 | 7 | |a MAT |x 037000 |2 bisacsh | |
082 | 0 | 4 | |a 515/.7242 |2 23 |
090 | |a QA329.42 |b .B57 2013 | ||
100 | 1 | |a Bismut, Jean-Michel. |0 http://id.loc.gov/authorities/names/n82207855 |1 http://viaf.org/viaf/91260670 | |
245 | 1 | 0 | |a Hypoelliptic Laplacian and Bott-Chern cohomology : |b a theorem of Riemann-Roch-Grothendieck in complex geometry / |c Jean-Michel Bismut. |
260 | |a Cham ; |a New York : |b Birkhäuser, |c c2013. | ||
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent |0 http://id.loc.gov/vocabulary/contentTypes/txt | ||
337 | |a computer |b c |2 rdamedia |0 http://id.loc.gov/vocabulary/mediaTypes/c | ||
338 | |a online resource |b cr |2 rdacarrier |0 http://id.loc.gov/vocabulary/carriers/cr | ||
490 | 1 | |a Progress in mathematics ; |v v.305 | |
504 | |a Includes bibliographical references and indexes. | ||
505 | 0 | 0 | |t Introduction -- |t The Riemannian adiabatic limit -- |t The holomorphic adiabatic limit -- |t The elliptic superconnections -- |t The elliptic superconnection forms -- |t The elliptic superconnections forms when [∂]̄M[∂]MωM=0 -- |t The hypoelliptic superconnections -- |t The hypoelliptic superconnection forms -- |t The hypoelliptic superconnection forms of vector bundles -- |t The hypoelliptic superconnection forms when [∂]̄M[∂]MωM=0 -- |t The exotic superconnection forms of a vector bundle -- |t Exotic superconnections and Riemann-Roch-Grothendieck. |
650 | 0 | |a Hypoelliptic operators. |0 http://id.loc.gov/authorities/subjects/sh85063777 | |
650 | 0 | |a Cohomology operations. |0 http://id.loc.gov/authorities/subjects/sh91001744 | |
650 | 0 | |a Geometry, Algebraic. |0 http://id.loc.gov/authorities/subjects/sh85054140 | |
653 | 4 | |a Mathematics. | |
653 | 4 | |a K-theory. | |
653 | 4 | |a Global analysis. | |
653 | 4 | |a Differential equations, partial. | |
653 | 4 | |a Partial Differential Equations. | |
653 | 4 | |a Global Analysis and Analysis on Manifolds. | |
655 | 4 | |a Electronic books. | |
650 | 7 | |a Cohomology operations. |2 fast |0 http://id.worldcat.org/fast/fst00866607 | |
650 | 7 | |a Geometry, Algebraic. |2 fast |0 http://id.worldcat.org/fast/fst00940902 | |
650 | 7 | |a Hypoelliptic operators. |2 fast |0 http://id.worldcat.org/fast/fst00965998 | |
830 | 0 | |a Progress in mathematics (Boston, Mass.) ; |v v.305. | |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/978-3-319-00128-9 |y SpringerLink |
903 | |a HeVa | ||
035 | |a (ICU)9851236 | ||
929 | |a eresource | ||
999 | f | f | |i 5f5d35bd-c560-5094-bf84-28764c930c52 |s e92a6324-3eef-5a4a-8e01-6a1e8043052b |
928 | |t Library of Congress classification |a QA329.42 .B57 2013 |l Online |c UC-FullText |u http://dx.doi.org/10.1007/978-3-319-00128-9 |z SpringerLink |g ebooks |i 11494295 |