Hypoelliptic Laplacian and Bott-Chern cohomology : a theorem of Riemann-Roch-Grothendieck in complex geometry /

Saved in:
Bibliographic Details
Author / Creator:Bismut, Jean-Michel.
Imprint:Cham ; New York : Birkhäuser, c2013.
Description:1 online resource.
Language:English
Series:Progress in mathematics ; v.305
Progress in mathematics (Boston, Mass.) ; v.305.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/9851236
Hidden Bibliographic Details
ISBN:9783319001289 (electronic bk.)
3319001280 (electronic bk.)
9783319001272
Notes:Includes bibliographical references and indexes.

MARC

LEADER 00000cam a2200000Ka 4500
001 9851236
003 ICU
005 20140128115400.0
006 m o d
007 cr cnu---unuuu
008 130605s2013 sz ob 001 0 eng d
020 |a 9783319001289 (electronic bk.) 
020 |a 3319001280 (electronic bk.) 
020 |z 9783319001272 
035 |a (OCoLC)846845296 
040 |a GW5XE  |c GW5XE  |d YDXCP  |d N$T  |d COO  |d ZMC 
049 |a CGUA 
072 7 |a MAT  |x 037000  |2 bisacsh 
082 0 4 |a 515/.7242  |2 23 
090 |a QA329.42  |b .B57 2013 
100 1 |a Bismut, Jean-Michel.  |0 http://id.loc.gov/authorities/names/n82207855  |1 http://viaf.org/viaf/91260670 
245 1 0 |a Hypoelliptic Laplacian and Bott-Chern cohomology :  |b a theorem of Riemann-Roch-Grothendieck in complex geometry /  |c Jean-Michel Bismut. 
260 |a Cham ;  |a New York :  |b Birkhäuser,  |c c2013. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Progress in mathematics ;  |v v.305 
504 |a Includes bibliographical references and indexes. 
505 0 0 |t Introduction --  |t The Riemannian adiabatic limit --  |t The holomorphic adiabatic limit --  |t The elliptic superconnections --  |t The elliptic superconnection forms --  |t The elliptic superconnections forms when [∂]̄M[∂]MωM=0 --  |t The hypoelliptic superconnections --  |t The hypoelliptic superconnection forms --  |t The hypoelliptic superconnection forms of vector bundles --  |t The hypoelliptic superconnection forms when [∂]̄M[∂]MωM=0 --  |t The exotic superconnection forms of a vector bundle --  |t Exotic superconnections and Riemann-Roch-Grothendieck. 
650 0 |a Hypoelliptic operators.  |0 http://id.loc.gov/authorities/subjects/sh85063777 
650 0 |a Cohomology operations.  |0 http://id.loc.gov/authorities/subjects/sh91001744 
650 0 |a Geometry, Algebraic.  |0 http://id.loc.gov/authorities/subjects/sh85054140 
653 4 |a Mathematics. 
653 4 |a K-theory. 
653 4 |a Global analysis. 
653 4 |a Differential equations, partial. 
653 4 |a Partial Differential Equations. 
653 4 |a Global Analysis and Analysis on Manifolds. 
655 4 |a Electronic books. 
650 7 |a Cohomology operations.  |2 fast  |0 http://id.worldcat.org/fast/fst00866607 
650 7 |a Geometry, Algebraic.  |2 fast  |0 http://id.worldcat.org/fast/fst00940902 
650 7 |a Hypoelliptic operators.  |2 fast  |0 http://id.worldcat.org/fast/fst00965998 
830 0 |a Progress in mathematics (Boston, Mass.) ;  |v v.305. 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-00128-9  |y SpringerLink 
903 |a HeVa 
035 |a (ICU)9851236 
929 |a eresource 
999 f f |i 5f5d35bd-c560-5094-bf84-28764c930c52  |s e92a6324-3eef-5a4a-8e01-6a1e8043052b 
928 |t Library of Congress classification  |a QA329.42 .B57 2013  |l Online  |c UC-FullText  |u http://dx.doi.org/10.1007/978-3-319-00128-9  |z SpringerLink  |g ebooks  |i 11494295