Normally hyperbolic invariant manifolds : the noncompact case /

Saved in:
Bibliographic Details
Author / Creator:Eldering, Jaap.
Imprint:New York : Springer, 2013.
Description:1 online resource (xii, 189 pages) : illustrations.
Language:English
Series:Atlantis series in dynamical systems, 2213-3526 ; v. 2
Atlantis series in dynamical systems ; v. 2.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/9852574
Hidden Bibliographic Details
ISBN:9789462390034 (electronic bk.)
9462390037 (electronic bk.)
9789462390027
9789462390034
Notes:Includes bibliographical references and index.
Summary:This monograph treats normally hyperbolic invariant manifolds, with a focus on noncompactness. These objects generalize hyperbolic fixed points and are ubiquitous in dynamical systems. First, normally hyperbolic invariant manifolds and their relation to hyperbolic fixed points and center manifolds, as well as, overviews of history and methods of proofs are presented. Furthermore, issues (such as uniformity and bounded geometry) arising due to noncompactness are discussed in great detail with examples. The main new result shown is a proof of persistence for noncompact normally hyperbolic invariant manifolds in Riemannian manifolds of bounded geometry. This extends well-known results by Fenichel and Hirsch, Pugh and Shub, and is complementary to noncompactness results in Banach spaces by Bates, Lu and Zeng. Along the way, some new results in bounded geometry are obtained and a framework is developed to analyze ODEs in a differential geometric context. Finally, the main result is extended to time and parameter dependent systems and overflowing invariant manifolds.
Standard no.:10.2991/978-94-6239-003-4

MARC

LEADER 00000cam a2200000Ma 4500
001 9852574
003 ICU
005 20140128124700.0
006 m o u
007 cr cnu|||unuuu
008 130625s2013 nyua ob 001 0 eng d
020 |a 9789462390034 (electronic bk.) 
020 |a 9462390037 (electronic bk.) 
020 |z 9789462390027 
020 |z 9789462390034 
024 7 |a 10.2991/978-94-6239-003-4  |2 doi 
035 |a (OCoLC)859159018 
040 |a E7B  |b eng  |e pn  |c E7B  |d GW5XE  |d OCLCQ  |d COO  |d ZMC 
049 |a CGUA 
082 0 4 |a 515/.352  |2 23 
090 |a QA614.8  |b .E54 2013eb 
100 1 |a Eldering, Jaap. 
245 1 0 |a Normally hyperbolic invariant manifolds :  |b the noncompact case /  |c Jaap Eldering. 
260 |a New York :  |b Springer,  |c 2013. 
300 |a 1 online resource (xii, 189 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Atlantis series in dynamical systems,  |x 2213-3526 ;  |v v. 2 
505 0 0 |t Introduction --  |t Manifolds of bounded geometry --  |t Persistence of noncompact NHIMs --  |t Extension of results. 
504 |a Includes bibliographical references and index. 
520 |a This monograph treats normally hyperbolic invariant manifolds, with a focus on noncompactness. These objects generalize hyperbolic fixed points and are ubiquitous in dynamical systems. First, normally hyperbolic invariant manifolds and their relation to hyperbolic fixed points and center manifolds, as well as, overviews of history and methods of proofs are presented. Furthermore, issues (such as uniformity and bounded geometry) arising due to noncompactness are discussed in great detail with examples. The main new result shown is a proof of persistence for noncompact normally hyperbolic invariant manifolds in Riemannian manifolds of bounded geometry. This extends well-known results by Fenichel and Hirsch, Pugh and Shub, and is complementary to noncompactness results in Banach spaces by Bates, Lu and Zeng. Along the way, some new results in bounded geometry are obtained and a framework is developed to analyze ODEs in a differential geometric context. Finally, the main result is extended to time and parameter dependent systems and overflowing invariant manifolds. 
650 0 |a Hyperbolic spaces.  |0 http://id.loc.gov/authorities/subjects/sh86006874 
650 0 |a Invariant manifolds.  |0 http://id.loc.gov/authorities/subjects/sh2003001076 
650 0 |a Geometry, Differential.  |0 http://id.loc.gov/authorities/subjects/sh85054146 
655 4 |a Electronic books. 
650 7 |a Geometry, Differential.  |2 fast  |0 http://id.worldcat.org/fast/fst00940919 
650 7 |a Hyperbolic spaces.  |2 fast  |0 http://id.worldcat.org/fast/fst00965723 
650 7 |a Invariant manifolds.  |2 fast  |0 http://id.worldcat.org/fast/fst00977978 
830 0 |a Atlantis series in dynamical systems ;  |v v. 2. 
856 4 0 |u http://dx.doi.org/10.2991/978-94-6239-003-4  |y SpringerLink 
903 |a HeVa 
035 |a (ICU)9852574 
929 |a eresource 
999 f f |i 3d383cf6-4e3a-502f-84f9-d62c79f6d582  |s 9933e0cd-3c96-51a1-9ebc-7ea84aea2e74 
928 |t Library of Congress classification  |a QA614.8 .E54 2013eb  |l Online  |c UC-FullText  |u http://dx.doi.org/10.2991/978-94-6239-003-4  |z SpringerLink  |g ebooks  |i 11495550