Inequalities for the numerical radius of linear operators in hilbert spaces /

Saved in:
Bibliographic Details
Author / Creator:Dragomir, Sever Silvestru, author.
Imprint:Cham : Springer, 2013.
Description:1 online resource (x, 120 pages).
Language:English
Series:SpringerBriefs in mathematics, 2191-8198
SpringerBriefs in Mathematics,
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/9852664
Hidden Bibliographic Details
ISBN:9783319014487 (electronic bk.)
331901448X (electronic bk.)
9783319014470
Notes:Includes bibliographical references.
Description based on online resource; title from PDF title page (SpringerLink, viewed September 16, 2013).
Summary:Aimed toward researchers, postgraduate students, and scientists in linear operator theory and mathematical inequalities, this self-contained monograph focuses on numerical radius inequalities for bounded linear operators on complex Hilbert spaces for the case of one and two operators. Students at the graduate level will learn some essentials that may be useful for reference in courses in functional analysis, operator theory, differential equations, and quantum computation, to name several. Chapter 1 presents fundamental facts about the numerical range and the numerical radius of bounded linear operators in Hilbert spaces. Chapter 2 illustrates recent results obtained concerning numerical radius and norm inequalities for one operator on a complex Hilbert space, as well as some special vector inequalities in inner product spaces due to Buzano, Goldstein, Ryff and Clarke as well as some reverse Schwarz inequalities and Gr ss type inequalities obtained by the author. Chapter 3 presents recent results regarding the norms and the numerical radii of two bounded linear operators. The techniques shown in this chapter are elementary but elegant and may be accessible to undergraduate students with a working knowledge of operator theory. A number of vector inequalities in inner product spaces as well as inequalities for means of nonnegative real numbers are also employed in this chapter. All the results presented are completely proved and the original references are mentioned.
Standard no.:10.1007/978-3-319-01448-7

MARC

LEADER 00000cam a2200000Ki 4500
001 9852664
003 ICU
005 20140128125200.0
006 m o d
007 cr cnu|||unuuu
008 131004s2013 sz ob 000 0 eng d
020 |a 9783319014487 (electronic bk.) 
020 |a 331901448X (electronic bk.) 
020 |z 9783319014470 
024 7 |a 10.1007/978-3-319-01448-7  |2 doi 
035 |a (OCoLC)859398317 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDXCP  |d N$T  |d COO  |d ZMC  |d IDEBK 
049 |a CGUA 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.7246  |2 23 
090 |a QA329.2 
100 1 |a Dragomir, Sever Silvestru,  |e author.  |0 http://id.loc.gov/authorities/names/nr88008889  |1 http://viaf.org/viaf/21985857 
245 1 0 |a Inequalities for the numerical radius of linear operators in hilbert spaces /  |c Silvestru Sever Dragomir. 
264 1 |a Cham :  |b Springer,  |c 2013. 
300 |a 1 online resource (x, 120 pages). 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a SpringerBriefs in mathematics,  |x 2191-8198 
505 0 0 |t Introduction --  |t Inequalities for One Operator --  |t Inequalities for Two Operators. 
504 |a Includes bibliographical references. 
520 |a Aimed toward researchers, postgraduate students, and scientists in linear operator theory and mathematical inequalities, this self-contained monograph focuses on numerical radius inequalities for bounded linear operators on complex Hilbert spaces for the case of one and two operators. Students at the graduate level will learn some essentials that may be useful for reference in courses in functional analysis, operator theory, differential equations, and quantum computation, to name several. Chapter 1 presents fundamental facts about the numerical range and the numerical radius of bounded linear operators in Hilbert spaces. Chapter 2 illustrates recent results obtained concerning numerical radius and norm inequalities for one operator on a complex Hilbert space, as well as some special vector inequalities in inner product spaces due to Buzano, Goldstein, Ryff and Clarke as well as some reverse Schwarz inequalities and Gr ss type inequalities obtained by the author. Chapter 3 presents recent results regarding the norms and the numerical radii of two bounded linear operators. The techniques shown in this chapter are elementary but elegant and may be accessible to undergraduate students with a working knowledge of operator theory. A number of vector inequalities in inner product spaces as well as inequalities for means of nonnegative real numbers are also employed in this chapter. All the results presented are completely proved and the original references are mentioned. 
588 |a Description based on online resource; title from PDF title page (SpringerLink, viewed September 16, 2013). 
650 0 |a Linear operators.  |0 http://id.loc.gov/authorities/subjects/sh85077178 
650 0 |a Hilbert space.  |0 http://id.loc.gov/authorities/subjects/sh85060803 
650 1 4 |a Mathematics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Analysis. 
655 4 |a Electronic books. 
650 7 |a Hilbert space.  |2 fast  |0 http://id.worldcat.org/fast/fst00956785 
650 7 |a Linear operators.  |2 fast  |0 http://id.worldcat.org/fast/fst00999087 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-01448-7  |y SpringerLink 
903 |a HeVa 
035 |a (ICU)9852664 
929 |a eresource 
999 f f |i 9b481fcf-3dd2-5b17-be42-da328153db0b  |s cb80b187-ddbd-5606-9625-dc9d29f7e0da 
928 |t Library of Congress classification  |a QA329.2  |l Online  |c UC-FullText  |u http://dx.doi.org/10.1007/978-3-319-01448-7  |z SpringerLink  |g ebooks  |i 11495531