Astronomy and big data : a data clustering approach to identifying uncertain galaxy morphology /

Saved in:
Bibliographic Details
Author / Creator:Edwards, Kieran Jay.
Imprint:Cham ; New York : Springer, c2014.
Description:1 online resource.
Language:English
Series:Studies in big data ; v.6
Studies in Big Data ; v.6.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/9990943
Hidden Bibliographic Details
Other authors / contributors:Gaber, Mohamed Medhat.
ISBN:9783319065991 (electronic bk.)
3319065998 (electronic bk.)
9783319065984
1306702550 (ebk)
9781306702553 (ebk)
Notes:Includes bibliographical references and index.
Description based on print version record.
Summary:With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as "Uncertain". This book reports on how to use data mining, more specifically clustering, to identify galaxies that the public has shown some degree of uncertainty for as to whether they belong to one morphology type or another. The book shows the importance of transitions between different data mining techniques in an insightful workflow. It demonstrates that Clustering enables to identify discriminating features in the analysed data sets, adopting a novel feature selection algorithms called Incremental Feature Selection (IFS). The book shows the use of state-of-the-art classification techniques, Random Forests and Support Vector Machines to validate the acquired results. It is concluded that a vast majority of these galaxies are, in fact, of spiral morphology with a small subset potentially consisting of stars, elliptical galaxies or galaxies of other morphological variants.
Other form:Print version: 9781306702553

MARC

LEADER 00000cam a2200000Ma 4500
001 9990943
003 ICU
005 20140620150600.0
006 m o d
007 cr |n|
008 140502s2014 sz ob 001 0 eng d
020 |a 9783319065991 (electronic bk.) 
020 |a 3319065998 (electronic bk.) 
020 |z 9783319065984 
020 |a 1306702550 (ebk) 
020 |a 9781306702553 (ebk) 
035 |a (OCoLC)878920960 
037 |a 601506  |b MIL 
040 |a IDEBK  |b eng  |c IDEBK  |d E7B  |d YDXCP  |d GW5XE  |d A7U 
049 |a CGUA 
082 0 4 |a 522/.85  |2 23 
090 |a QB51.3.E43  |b E39 2014 
100 1 |a Edwards, Kieran Jay.  |0 http://id.loc.gov/authorities/names/no2014105450  |1 http://viaf.org/viaf/309916052 
245 1 0 |a Astronomy and big data :  |b a data clustering approach to identifying uncertain galaxy morphology /  |c Kieran Jay Edwards, Mohamed Medhat Gaber. 
260 |a Cham ;  |a New York :  |b Springer,  |c c2014. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Studies in big data ;  |v v.6 
504 |a Includes bibliographical references and index. 
588 |a Description based on print version record. 
520 |a With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as "Uncertain". This book reports on how to use data mining, more specifically clustering, to identify galaxies that the public has shown some degree of uncertainty for as to whether they belong to one morphology type or another. The book shows the importance of transitions between different data mining techniques in an insightful workflow. It demonstrates that Clustering enables to identify discriminating features in the analysed data sets, adopting a novel feature selection algorithms called Incremental Feature Selection (IFS). The book shows the use of state-of-the-art classification techniques, Random Forests and Support Vector Machines to validate the acquired results. It is concluded that a vast majority of these galaxies are, in fact, of spiral morphology with a small subset potentially consisting of stars, elliptical galaxies or galaxies of other morphological variants. 
650 0 |a Astronomy  |x Data processing.  |0 http://id.loc.gov/authorities/subjects/sh88006526 
650 0 |a Data mining.  |0 http://id.loc.gov/authorities/subjects/sh97002073 
655 7 |a Electronic books.  |2 local 
650 7 |a Astronomy  |x Data processing.  |2 fast  |0 http://id.worldcat.org/fast/fst00819685 
650 7 |a Data mining.  |2 fast  |0 http://id.worldcat.org/fast/fst00887946 
700 1 |a Gaber, Mohamed Medhat.  |0 http://id.loc.gov/authorities/names/n2008001603  |1 http://viaf.org/viaf/101200490 
776 0 8 |i Print version:  |z 9781306702553 
830 0 |a Studies in Big Data ;  |v v.6. 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06599-1  |y SpringerLink 
903 |a HeVa 
035 |a (ICU)9990943 
929 |a eresource 
999 f f |i 787a3351-b43a-5fff-9772-97e1db6f65b0  |s fa09abae-de8f-53c9-8edd-f388aacfd78d 
928 |t Library of Congress classification  |a QB51.3.E43 E39 2014  |l Online  |c UC-FullText  |u http://dx.doi.org/10.1007/978-3-319-06599-1  |z SpringerLink  |g ebooks  |i 11495548