Heegner modules and elliptic curves /

Saved in:
Bibliographic Details
Author / Creator:Brown, M. L. (Martin L.)
Imprint:Berlin ; New York : Springer, ©2004.
Description:1 online resource (x, 517 pages).
Language:English
Series:Lecture notes in mathematics, 0075-8434 ; 1849
Lecture notes in mathematics (Springer-Verlag) ; 1849.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11065934
Hidden Bibliographic Details
ISBN:9783540444756
3540444750
3540222901
9783540222903
Notes:Includes bibliographical references (pages 507-510) and index.
Summary:Heegner points on both modular curves and elliptic curves over global fields of any characteristic form the topic of this research monograph. The Heegner module of an elliptic curve is an original concept introduced in this text. The computation of the cohomology of the Heegner module is the main technical result and is applied to prove the Tate conjecture for a class of elliptic surfaces over finite fields; this conjecture is equivalent to the Birch and Swinnerton-Dyer conjecture for the corresponding elliptic curves over global fields.
Other form:Print version: Brown, M.L. (Martin L.). Heegner modules and elliptic curves. Berlin ; New York : Springer, ©2004 3540222901