Heegner modules and elliptic curves /

Saved in:
Bibliographic Details
Author / Creator:Brown, M. L. (Martin L.)
Imprint:Berlin ; New York : Springer, ©2004.
Description:1 online resource (x, 517 pages).
Language:English
Series:Lecture notes in mathematics, 0075-8434 ; 1849
Lecture notes in mathematics (Springer-Verlag) ; 1849.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11065934
Hidden Bibliographic Details
ISBN:9783540444756
3540444750
3540222901
9783540222903
Notes:Includes bibliographical references (pages 507-510) and index.
Summary:Heegner points on both modular curves and elliptic curves over global fields of any characteristic form the topic of this research monograph. The Heegner module of an elliptic curve is an original concept introduced in this text. The computation of the cohomology of the Heegner module is the main technical result and is applied to prove the Tate conjecture for a class of elliptic surfaces over finite fields; this conjecture is equivalent to the Birch and Swinnerton-Dyer conjecture for the corresponding elliptic curves over global fields.
Other form:Print version: Brown, M.L. (Martin L.). Heegner modules and elliptic curves. Berlin ; New York : Springer, ©2004 3540222901

MARC

LEADER 00000cam a22000004a 4500
001 11065934
005 20170630044603.6
006 m o d
007 cr |n|||||||||
008 040517s2004 gw ob 001 0 eng c
003 ICU
040 |a COO  |b eng  |e pn  |c COO  |d BUF  |d SPLNM  |d DEBSZ  |d GW5XE  |d OCLCQ  |d AU@  |d YNG  |d DKDLA  |d OCLCQ  |d GW5XE  |d OCLCF  |d OCLCQ  |d S3O  |d OCLCQ 
019 |a 224264760  |a 648147865  |a 769231928 
020 |a 9783540444756  |q (electronic bk.) 
020 |a 3540444750  |q (electronic bk.) 
020 |z 3540222901 
020 |z 9783540222903 
035 |a (OCoLC)162128282  |z (OCoLC)224264760  |z (OCoLC)648147865  |z (OCoLC)769231928 
042 |a pcc 
050 4 |a QA3  |b .L28 no. 1849  |a QA567.2.E44 
049 |a MAIN 
100 1 |a Brown, M. L.  |q (Martin L.)  |0 http://id.loc.gov/authorities/names/no2004078490  |1 http://viaf.org/viaf/69007157 
245 1 0 |a Heegner modules and elliptic curves /  |c M. [Martin] L. Brown. 
260 |a Berlin ;  |a New York :  |b Springer,  |c ©2004. 
300 |a 1 online resource (x, 517 pages). 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Lecture notes in mathematics,  |x 0075-8434 ;  |v 1849 
504 |a Includes bibliographical references (pages 507-510) and index. 
505 0 |a Preface -- Introduction -- Preliminaries -- Bruhat-Tits trees with complex multiplication -- Heegner sheaves -- The Heegner module -- Cohomology of the Heegner module -- Finiteness of the Tate-Shafarevich groups -- Appendix A.: Rigid analytic modular forms -- Appendix B.: Automorphic forms and elliptic curves over function fields -- References -- Index. 
520 |a Heegner points on both modular curves and elliptic curves over global fields of any characteristic form the topic of this research monograph. The Heegner module of an elliptic curve is an original concept introduced in this text. The computation of the cohomology of the Heegner module is the main technical result and is applied to prove the Tate conjecture for a class of elliptic surfaces over finite fields; this conjecture is equivalent to the Birch and Swinnerton-Dyer conjecture for the corresponding elliptic curves over global fields. 
650 0 |a Curves, Elliptic.  |0 http://id.loc.gov/authorities/subjects/sh85034918 
650 0 |a Algebraic fields.  |0 http://id.loc.gov/authorities/subjects/sh85048127 
650 0 |a Homology theory.  |0 http://id.loc.gov/authorities/subjects/sh85061770 
650 7 |a Algebraic fields.  |2 fast  |0 (OCoLC)fst00804931 
650 7 |a Curves, Elliptic.  |2 fast  |0 (OCoLC)fst00885455 
650 7 |a Homology theory.  |2 fast  |0 (OCoLC)fst00959720 
650 1 7 |a Algebraïsche meetkunde.  |2 gtt 
650 1 7 |a Getaltheorie.  |2 gtt 
650 7 |a Curvas eliticas.  |2 larpcal 
650 7 |a Geometria algébrica.  |2 larpcal 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Brown, M.L. (Martin L.).  |t Heegner modules and elliptic curves.  |d Berlin ; New York : Springer, ©2004  |z 3540222901  |w (DLC) 2004107464  |w (OCoLC)56014403 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 1849. 
856 4 0 |u http://link.springer.com/10.1007/b98488  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 78a7813e-0192-53cd-89d2-ab71e1745019  |s 4a1469d4-6e07-5c0b-8ac7-507aab417b62 
928 |t Library of Congress classification  |a QA3 .L28 no. 1849  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/b98488  |z SpringerLink  |g ebooks  |i 9873873