Summary: | This book presents recent developments in systematic studies of hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, as well as accelerating film flow of non-Newtonian power-law fluids (FFNF). A novel system of analysis models is provided with a developed velocity component method, instead of traditional Falkner-Skan type transformation, and a system of models for treatment of variable thermophysical properties is presented with an innovative temperature parameter method that makes it easier to similarly treat related governing differential equations for consideration of fluid variable thermophysical properties. A pseudo-similarity method is applied for dealing with thermal boundary layer of FFNF, furthermore, with an induced local Prandtl number, which greatly simplifies the heat-transfer analysis and numerical calculation. Based on rigorous theoretical analyses, a system of numerical solutions is formulated by special curve-fitting approaches for simple and reliable predictions of heat and mass transfer and hydrodynamics. In view of a shortage of experimental results for velocity field of free convection boundary layer, recent rigorous experimental measurements are presented covering large temperature differences.
|