Summary: | We experience elasticity everywhere in daily life: in the straightening or curling of hairs, the irreversible deformations of car bodies after a crash, or the bouncing of elastic balls in table tennis or football. The theory of elasticity is essential to the recent developments of applied and fundamental science, such as the bio-mechanics of DNA filaments and other macro-molecules, and the animation of virtual characters in computer graphics and materials science. In this book, the emphasis is on the elasticity of thin bodies (plates, shells, rods) in connection with geometry. It covers such topics as the mechanics of hairs (curled and straight), the buckling instabilities of stressed plates, including folds and conical points appearing at larger stresses, the geometric rigidity of elastic shells, and the delamination of thin compressed films. It applies general methods of classical analysis, including advanced non-linear aspects (bifurcation theory, boundary layer analysis), to derive detailed, fully explicit solutions to specific problems. These theoretical concepts are discussed in connection with experiments. The book is self-contained. Mathematical prerequisites are vector analysis and differential equations. The book can serve as a concrete introduction to non-linear methods in analysis. --Book Jacket.
|