Fermi surface and quantum critical phenomena of high-temperature superconductors /

Saved in:
Bibliographic Details
Author / Creator:Putzke, Carsten Matthias, author.
Imprint:Cham, Switzerland : Springer, [2016]
©2017
Description:1 online resource
Language:English
Series:Springer theses
Springer theses.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11269259
Hidden Bibliographic Details
ISBN:9783319486468
3319486462
9783319486451
Notes:"Doctoral thesis accepted by the University of Bristol, Bristol, England, UK."
Includes bibliographical references.
Online resource; title from PDF title page (SpringerLink, viewed December 5, 2016).
Summary:This thesis provides a detailed introduction to quantum oscillation measurement and analysis and offers a connection between Fermi surface properties and superconductivity in high-temperature superconductors. It also discusses the field of iron-based superconductors and tests the models for the appearance of nodes in the superconducting gap of a 111-type pnictide using quantum oscillation measurements combined with band structure calculation. The same measurements were carried out to determine the quasiparticle mass in BaFe2(As1-xPx)2, which is strongly enhanced at the expected quantum critical point. While the lower superconducting critical field shows evidence of quantum criticality, the upper superconducting critical field is not influenced by the quantum critical point. These findings contradict conventional theories, demonstrating the need for a theoretical treatment of quantum critical superconductors, which has not been addressed to date. The quest to discover similar evidence in the cuprates calls for the application of extreme conditions. As such, quantum oscillation measurements were performed under high pressure in a high magnetic field, revealing a negative correlation between quasiparticle mass and superconducting critical temperature.