Summary: | "This monograph is the first published book devoted to the theory of differential equations with non-instantaneous impulses. It aims to equip the reader with mathematical models and theory behind real life processes in physics, biology, population dynamics, ecology and pharmacokinetics. The authors examine a wide scope of differential equations with non-instantaneous impulses through three comprehensive chapters, providing an all-rounded and unique presentation on the topic, including:- Ordinary differential equations with non-instantaneous impulses (scalar and n-dimensional case)- Fractional differential equations with non-instantaneous impulses (with Caputo fractional derivatives of order q ∊ (0, 1))- Ordinary differential equations with non-instantaneous impulses occurring at random moments (with exponential, Erlang, or Gamma distribution)Each chapter focuses on theory, proofs and examples, and contains numerous graphs to enrich the reader's understanding. Additionally, a carefully selected bibliography is included. Graduate students at various levels as well as researchers in differential equations and related fields will find this a valuable resource of both introductory and advanced material."-- This monograph is the first published book devoted to the theory of differential equations with non-instantaneous impulses. It aims to equip the reader with mathematical models and theory behind real life processes in physics, biology, population dynamics, ecology and pharmacokinetics. The authors examine a wide scope of differential equations with non-instantaneous impulses through three comprehensive chapters, providing an all-rounded and unique presentation on the topic, including: - Ordinary differential equations with non-instantaneous impulses (scalar and n-dimensional case) - Fractional differential equa tions with non-instantaneous impulses (with Caputo fractional derivatives of order q ϵ (0, 1)) - Ordinary differential equations with non-instantaneous impulses occurring at random moments (with exponential, Erlang, or Gamma distribution) Each chapter focuses on theory, proofs and examples, and contains numerous graphs to enrich the reader's understanding. Additionally, a carefully selected bibliography is included. Graduate students at various levels as well as researchers in differential equations and related fields will find this a valuable resource of both introductory and advanced material.--
|