Hidden Bibliographic Details
Other authors / contributors: | Garg, Rahul, 1985- author.
Shukla, Gaurav, author.
Srivastava, H. S. (Hari Shankar), 1946- author.
|
ISBN: | 9789811532382 9811532389 9789811532375 9811532370
|
Digital file characteristics: | text file PDF
|
Notes: | Includes bibliographical references. Print version record.
|
Summary: | This book addresses the mapping of soil-landscape parameters in the geospatial domain. It begins by discussing the fundamental concepts, and then explains how machine learning and geomatics can be applied for more efficient mapping and to improve our understanding and management of 'soil. The judicious utilization of a piece of land is one of the biggest and most important current challenges, especially in light of the rapid global urbanization, which requires continuous monitoring of resource consumption. The book provides a clear overview of how machine learning can be used to analyze remote sensing data to monitor the key parameters, below, at, and above the surface. It not only offers insights into the approaches, but also allows readers to learn about the challenges and issues associated with the digital mapping of these parameters and to gain a better understanding of the selection of data to represent soil-landscape relationships as well as the complex and interconnected links between soil-landscape parameters under a range of soil and climatic conditions. Lastly, the book sheds light on using the network of satellite-based Earth observations to provide solutions toward smart farming and smart land management.
|
Other form: | Print version: Garg, Pradeep Kumar. Digital Mapping of Soil Landscape Parameters : Geospatial Analyses Using Machine Learning and Geomatics. Singapore : Springer, ©2020 9789811532375
|
Standard no.: | 10.1007/978-981-15-3
|