Machine learning and knowledge discovery in databases : European conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020 : proceedings. Part II /

Saved in:
Bibliographic Details
Meeting name:ECML PKDD (Conference) (2020 : Online)
Imprint:Cham : Springer, [2021]
Description:1 online resource (xliii, 742 pages) : illustrations (chiefly color).
Language:English
Series:Lecture notes in computer science. Lecture notes in artificial intelligence ; 12458
Lecture notes in computer science. Lecture notes in artificial intelligence.
Lecture notes in computer science ; 12458.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12611320
Hidden Bibliographic Details
Varying Form of Title:ECML PKDD 2020
Other authors / contributors:Hutter, Frank, editor.
Kersting, Kristian, editor.
Lijffijt, Jefrey, editor.
Valera, Isabel, editor.
ISBN:9783030676612
3030676617
9783030676605
Notes:International conference proceedings.
Includes author index.
Access restricted to registered UOB users with valid accounts.
Online resource; title from PDF title page (SpringerLink, viewed March 23, 2021).
Summary:The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio- ) temporal data and recurrent neural networks; collaborative filtering and matrix completion. Part II: deep learning optimization and theory; active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning. Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics. Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data. Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.
Other form:Printed edition: 9783030676605
Printed edition: 9783030676629
Standard no.:10.1007/978-3-030-67661-2