Machine learning and knowledge discovery in databases : European conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020 : proceedings. Part II /

Saved in:
Bibliographic Details
Meeting name:ECML PKDD (Conference) (2020 : Online)
Imprint:Cham : Springer, [2021]
Description:1 online resource (xliii, 742 pages) : illustrations (chiefly color).
Language:English
Series:Lecture notes in computer science. Lecture notes in artificial intelligence ; 12458
Lecture notes in computer science. Lecture notes in artificial intelligence.
Lecture notes in computer science ; 12458.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/12611320
Hidden Bibliographic Details
Varying Form of Title:ECML PKDD 2020
Other authors / contributors:Hutter, Frank, editor.
Kersting, Kristian, editor.
Lijffijt, Jefrey, editor.
Valera, Isabel, editor.
ISBN:9783030676612
3030676617
9783030676605
Notes:International conference proceedings.
Includes author index.
Access restricted to registered UOB users with valid accounts.
Online resource; title from PDF title page (SpringerLink, viewed March 23, 2021).
Summary:The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio- ) temporal data and recurrent neural networks; collaborative filtering and matrix completion. Part II: deep learning optimization and theory; active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning. Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics. Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data. Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.
Other form:Printed edition: 9783030676605
Printed edition: 9783030676629
Standard no.:10.1007/978-3-030-67661-2

MARC

LEADER 00000cam a2200000Ii 4500
001 12611320
006 m o d
007 cr |||||||||||
008 210224s2021 sz a o 101 0 eng d
005 20240521135801.6
019 |a 1249943344 
020 |a 9783030676612  |q (electronic bk.) 
020 |a 3030676617  |q (electronic bk.) 
020 |z 9783030676605 
024 7 |a 10.1007/978-3-030-67661-2  |2 doi 
035 |a (OCoLC)1241065523  |z (OCoLC)1249943344 
035 9 |a (OCLCCM-CC)1241065523 
040 |a DKU  |b eng  |e pn  |e rda  |c DKU  |d OCLCO  |d OCLCQ  |d YDXIT  |d GW5XE  |d OCLCO  |d EBLCP  |d OCLCF  |d LEATE  |d UKAHL 
049 |a MAIN 
050 4 |a Q325.5 
072 7 |a UNF  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
111 2 |a ECML PKDD (Conference)  |d (2020 :  |c Online) 
245 1 0 |a Machine learning and knowledge discovery in databases :  |b European conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020 : proceedings.  |n Part II /  |c Frank Hutter, Kristian Kersting, Jefrey Lijffijt, Isabel Valera (eds.). 
246 3 0 |a ECML PKDD 2020 
264 1 |a Cham :  |b Springer,  |c [2021] 
300 |a 1 online resource (xliii, 742 pages) :  |b illustrations (chiefly color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture notes in computer science. Lecture notes in artificial intelligence ;  |v 12458 
500 |a International conference proceedings. 
500 |a Includes author index. 
520 |a The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio- ) temporal data and recurrent neural networks; collaborative filtering and matrix completion. Part II: deep learning optimization and theory; active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning. Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics. Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data. Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track. 
505 0 |a Deep learning optimization and theory -- active learning -- adversarial learning; federated learning -- Kernel methods and online learning -- partial label learning -- reinforcement learning -- transfer and multi-task learning -- Bayesian optimization and few-shot learning. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed March 23, 2021). 
506 |a Access restricted to registered UOB users with valid accounts. 
650 0 |a Machine learning  |v Congresses. 
650 0 |a Data mining  |v Congresses. 
650 0 |a Data mining.  |0 http://id.loc.gov/authorities/subjects/sh97002073 
650 0 |a Machine learning.  |0 http://id.loc.gov/authorities/subjects/sh85079324 
650 0 |a Education  |x Data processing.  |0 http://id.loc.gov/authorities/subjects/sh85041001 
650 0 |a Computer science  |x Mathematics.  |0 http://id.loc.gov/authorities/subjects/sh85042295 
650 0 |a Optical data processing.  |0 http://id.loc.gov/authorities/subjects/sh85095143 
650 7 |a Computer science  |x Mathematics.  |2 fast  |0 (OCoLC)fst00872460 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Education  |x Data processing.  |2 fast  |0 (OCoLC)fst00902579 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Optical data processing.  |2 fast  |0 (OCoLC)fst01046675 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Conference papers and proceedings.  |2 lcgft  |0 http://id.loc.gov/authorities/genreForms/gf2014026068 
700 1 |a Hutter, Frank,  |e editor. 
700 1 |a Kersting, Kristian,  |e editor.  |0 http://id.loc.gov/authorities/names/no2007046979 
700 1 |a Lijffijt, Jefrey,  |e editor. 
700 1 |a Valera, Isabel,  |e editor. 
773 0 |t Springer Nature eBook  |w (OCoLC-LEATE)288477 
776 0 8 |i Printed edition:  |z 9783030676605 
776 0 8 |i Printed edition:  |z 9783030676629 
830 0 |a Lecture notes in computer science.  |p Lecture notes in artificial intelligence.  |0 http://id.loc.gov/authorities/names/n86736436 
830 0 |a Lecture notes in computer science ;  |v 12458.  |0 http://id.loc.gov/authorities/names/n42015162 
903 |a HeVa 
929 |a oclccm 
999 f f |i 85628568-a140-5d6a-83d9-e41eb8ecf611  |s 444d7493-87c3-5dcb-8e7c-872059880264 
928 |t Library of Congress classification  |a Q325.5  |l Online  |c UC-FullText  |u https://link.springer.com/10.1007/978-3-030-67661-2  |z Springer Nature  |g ebooks  |i 12626928