Python and HDF5 /

Saved in:
Bibliographic Details
Author / Creator:Collette, Andrew.
Imprint:Sebastopol, Calif. : O'Reilly Media, Inc., 2013.
©2014
Description:1 online resource (135 pages)
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/13618533
Hidden Bibliographic Details
ISBN:9781491945001
1491945001
9781491944981
1491944986
9781491945018
149194501X
1449367836
9781449367831
Digital file characteristics:text file
Notes:Print version record.
Summary:Gain hands-on experience with HDF5 for storing scientific data in Python. This practical guide quickly gets you up to speed on the details, best practices, and pitfalls of using HDF5 to archive and share numerical datasets ranging in size from gigabytes to terabytes. Through real-world examples and practical exercises, you'll explore topics such as scientific datasets, hierarchically organized groups, user-defined metadata, and interoperable files. Examples are applicable for users of both Python 2 and Python 3. If you're familiar with the basics of Python data analysis, this is an ideal introduction to HDF5. Get set up with HDF5 tools and create your first HDF5 file Work with datasets by learning the HDF5 Dataset object Understand advanced features like dataset chunking and compression Learn how to work with HDF5's hierarchical structure, using groups Create self-describing files by adding metadata with HDF5 attributes Take advantage of HDF5's type system to create interoperable files Express relationships among data with references, named types, and dimension scales Discover how Python mechanisms for writing parallel code interact with HDF5.
Other form:Print version: Collette, Andrew. Python and HDF5 1449367836