Summary: | Random variation is a fact of life that provides substance to a wide range of problems in the sciences, engineering, and economics. There is a growing need in diverse disciplines to model complex patterns of variation and interdependence using random fields, as both deterministic treatment and conventional statistics are often insufficient. An ideal random field model will capture key features of complex random phenomena in terms of a minimum number of physically meaningful and experimentally accessible parameters. This volume offers a synthesis of methods to describe and analyze and, where appropriate, predict and control random fields. There is much new material, covering both theory and applications, notably on a class of probability distributions derived from quantum mechanics, relevant to stochastic modeling in fields such as cosmology, biology and system reliability, and on discrete-unit or agent-based random processes.
|